template<typename LatticeModel_T, typename Filter_T = field::DefaultEvaluationFilter>
class walberla::pe_coupling::discrete_particle_methods::GNSSmagorinskyLESField< LatticeModel_T, Filter_T >
Adjusts locally the fluid viscosity based on a LES-Smagorinsky turbulence model when using GNS-LBM.
The original LES model is discussed in:
- S. Hou, J. Sterling, S. Chen, G. Doolen, A lattice Boltzmann subgrid model for high reynolds number flows, in: A. T. Lawniczak, R. Kapral (Eds.), Pattern formation and lattice gas automata, Vol. 6 of Fields Institute Communications, American Mathematical Society, Providence, RI, 1996, p. 151–166.
- H. Yu, S. S. Girimaji, L.-S. Luo, DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method, Journal of Computational Physics 209 (2) (2005) 599–616. doi:10.1016/j.jcp.2005.03.022.
The second reference suggests to use a Smagorinsky constant of 0.1.
An implementation of if for standard LBM is found in "lbm/lattice_model/SmagorinskyLES.h"
This version is adapted to use the special GNS-LBM equilibrium distribution functions to calculate the non-equilibrium PDFs. These are given in Z. Guo, T. S. Zhao - "Lattice Boltzmann model for incompressible flows
through porous media", Phys. Rev. E 66 (2002)036304. doi:10.1103/PhysRevE.66.036304.
Combining LES with GNS-LBM was proposed in
- C. Rettinger, U. Ruede - "A Coupled Lattice Boltzmann Method and Discrete Element Method for Discrete Particle
Simulations of Particulate Flows". arXiv preprint arXiv:1711.00336 (2017)
Uses the value from the omegaField as tau0 and adds a calculated tauTurbulent to it. Can be used together with the collision model "SRTField"