Bibliography
[1]

Cyrus K. Aidun, Yannan Lu, and E.-Jiang Ding. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. Journal of Fluid Mechanics, 373:287–311, 1998.

[2]

J. A. Baerentzen and H. Aanaes. Signed distance computation using the angle weighted pseudonormal. IEEE Transactions on Visualization and Computer Graphics, 11(3):243–253, May 2005.

[3]

Martin Bauer, Florian Schornbaum, Christian Godenschwager, Matthias Markl, Daniela Anderl, Harald Köstler, and Ulrich Rüde. A Python extension for the massively parallel multiphysics simulation framework waLBerla. International Journal of Parallel, Emergent and Distributed Systems, 31(6):529–542, 2016.

[4]

Martin Bauer, Johannes Hötzer, Dominik Ernst, Julian Hammer, Marco Seiz, Henrik Hierl, Jan Hönig, Harald Köstler, Gerhard Wellein, Britta Nestler, and Ulrich Rüde. Code generation for massively parallel phase-field simulations. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–32, 2019.

[5]

Martin Bauer, Sebastian Eibl, Christian Godenschwager, Nils Kohl, Michael Kuron, Christoph Rettinger, Florian Schornbaum, Christoph Schwarzmeier, Dominik Thönnes, Harald Köstler, and Ulrich Rüde. waLBerla: A block-structured high-performance framework for multiphysics simulations. Computers & Mathematics with Applications, 81:478–501, 2021.

[6]

Martin Bauer, Harald Köstler, and Ulrich Rüde. lbmpy: Automatic code generation for efficient parallel lattice Boltzmann methods. Journal of Computational Science, 49:101269, 2021.

[7]

Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 94(3):511–525, 1954.

[8]

Edward Biegert, Bernhard Vowinckel, and Eckart Meiburg. A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds. Journal of Computational Physics, 340:105 – 127, 2017.

[9]

Dominique d'Humières. Multiple–relaxation–time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 360(1792):437–451, 2002.

[10]

Sebastian Eibl and Ulrich Rüde. A local parallel communication algorithm for polydisperse rigid body dynamics. Parallel Computing, 80:36–48, 2018.

[11]

Martin Geier, Martin Schönherr, Andrea Pasquali, and Manfred Krafczyk. The cumulant lattice Boltzmann equation in three dimensions: Theory and validation. Computers & Mathematics with Applications, 70(4):507–547, 2015.

[12]

Irina Ginzburg, Frederik Verhaeghe, and Dominique d'Humières. Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme. Communications in computational physics, 3(3):519–581, 2008.

[13]

Irina Ginzburg, Frederik Verhaeghe, and Dominique d'Humières. Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions. Communications in Computational Physics, 3(2):427–478, 2008.

[14]

Christian Godenschwager, Florian Schornbaum, Martin Bauer, Harald Köstler, and Ulrich Rüde. A framework for hybrid parallel flow simulations with a trillion cells in complex geometries. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, page 35. ACM, Association for Computing Machinery, 2013.

[15]

Zhaoli Guo, Chuguang Zheng, and Baochang Shi. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E, 65(4):046308, 2002.

[16]

Mark W Jones. 3D distance from a point to a triangle. Department of Computer Science, University of Wales Swansea Technical Report CSR-5, 1995.

[17]

AL Kupershtokh. Calculations of the action of electric forces in the lattice Boltzmann equation method using the difference of equilibrium distribution functions. In Proc. 7th Int. Conf. on Modern Problems of Electrophysics and Electrohydrodynamics of Liquids, St. Petersburg State University, St. Petersburg, Russia, pages 152–155, 2003.

[18]

AL Kupershtokh. Incorporating a body force term into the lattice Boltzmann equation. Bulletin of Novosibirsk State University: Series of Mathematics, Mechanics and Informatics, 4(2):75, 2004.

[19]

Anthony JC Ladd. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics, 271:285–309, 1994.

[20]

Jonas Latt. Hydrodynamic limit of lattice Boltzmann equations. PhD thesis, University of Geneva, 2007.

[21]

Li-Shi Luo. Lattice-gas automata and lattice Boltzmann equations for two-dimensional hydrodynamics. PhD thesis, Georgia Institute of Technology, 1993.

[22]

N.-Q. Nguyen and A. J. C. Ladd. Lubrication corrections for lattice-boltzmann simulations of particle suspensions. Physical Review E, 66:046708, 2002.

[23]

D. R. Noble and J. R. Torczynski. A lattice-Boltzmann method for partially saturated computational cells. International Journal of Modern Physics C, 09(08):1189–1201, 1998.

[24]

Chongxun Pan, Li-Shi Luo, and Cass T Miller. An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Computers & fluids, 35(8):898–909, 2006.

[25]

Christoph Rettinger and Ulrich Rüde. A comparative study of fluid-particle coupling methods for fully resolved lattice Boltzmann simulations. Computers & Fluids, 154:74–89, 2017.

[26]

Christoph Rettinger and Ulrich Rüde. A coupled lattice Boltzmann method and discrete element method for discrete particle simulations of particulate flows. Computers & Fluids, 172:706–719, 2018.

[27]

Christoph Rettinger and Ulrich Rüde. Dynamic load balancing techniques for particulate flow simulations. Computation, 7(1), 2019.

[28]

Christoph Rettinger, Christian Godenschwager, Sebastian Eibl, Tobias Preclik, Tobias Schruff, Roy Frings, and Ulrich Rüde. Fully resolved simulations of dune formation in riverbeds. In Julian M. Kunkel, Rio Yokota, Pavan Balaji, and David Keyes, editors, High Performance Computing, pages 3–21. Springer International Publishing, 2017.

[29]

Ulf D Schiller. Thermal fluctuations and boundary conditions in the lattice Boltzmann method. PhD thesis, Johannes Gutenberg-Universität, Mainz, 2008.

[30]

Florian Schornbaum and Ulrich Rüde. Massively parallel algorithms for the lattice Boltzmann method on nonuniform grids. SIAM Journal on Scientific Computing, 38(2):C96–C126, 2016.

[31]

S. Schwarz, T. Kempe, and J. Fröhlich. A temporal discretization scheme to compute the motion of light particles in viscous flows by an immersed boundary method. Journal of Computational Physics, 281:591–613, 2015.

[32]

Xiaowen Shan and Hudong Chen. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Physical Review E, 49(4):2941–2948, 1994.